Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hiroyuki Oku, Keiichi Yamada and Ryoichi Katakai*

Department of Chemistry, Gunma University, Kiryu, Gunma 376-8515, Japan

Correspondence e-mail:
katakai@chem.gunma-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.015 \AA$
R factor $=0.089$
$w R$ factor $=0.193$
Data-to-parameter ratio $=9.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

cis- and trans-Conformers at the urethane linkage: tert-butoxycarbonyl-t-alanyl-t-proline methyl ester (Boc-l-Ala-L-Pro-OMe)

Crystals of the title compound, $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}$, were successfully grown from an oily product at low temperature (below 260 K). There are two independent molecules in the asymmetric unit. One molecule has a cis and the other a trans conformation at the urethane linkage, $-\mathrm{O}-\mathrm{CO}-\mathrm{NH}-$. Independent molecules are linked into dimers, but not into chains, by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds.

Comment

The title compound, (I), is a key starting material in our studies of synthetic antigens (Ishiguro et al., 2001) and models of enzyme-active sites (Abe et al., 2001). Similar to (I), compounds Boc-Xaa-Pro-OMe (where Xaa is any amino acid) do not often crystallize at room temperature. Therefore, in this study, the crystal structure of (I) has been determined in order to find out what makes these types of compounds exist in an oily state.

(I)

The structure of the two molecules in the asymmetric unit of (I) is shown in Fig. 1. The difference in the two independent molecules is found at the linkage between Boc and Ala. One has a cis and the other a trans conformation at the urethane linkage, $-\mathrm{O}-\mathrm{CO}-\mathrm{NH}-$. The cis conformation is not common, but it is sometimes observed in short peptides (Benedetti et al., 1980).

The cis-urethane in one independent molecule forms hydrogen bonds with a trans-urethane of the amide group in the other independent molecule. Thus the two independent molecules are linked into dimers by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds.

Intermolecular interaction networks, such as are formed with $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds, especially extended hydrogen-bonded chains, are often found in peptide compounds (Karle, 1992; Goerbitz \& Etter, 1992; Clegg et al., 2003). This is an important crystallizing force for peptide compounds. An intermolecular hydrogen-bonded network of molecules is, however, not found in the crystal structure of (I).

Received 26 June 2003
Accepted 3 July 2003
Online 17 July 2003

A relatively high $U_{\text {iso }}$ value [0.141 (6) \AA^{2}] was observed for atom C134. This is probably due to the puckering motion of the five-membered ring in the Pro residue. In this case, disorder, which might be associated with this puckering, was not modelled.

The puckering motion is responsible for the short bond lengths of $\mathrm{C} 135-\mathrm{C} 134$ and $\mathrm{C} 133-\mathrm{C} 134$ [1.43 (2) and 1.37 (2) Å, respectively]. These values are unusual for $s p^{3}-s p^{3}$ bond lengths. These geometries represent the averaged geometries of the puckering conformers of the five-membered ring in the Pro residue.

In conclusion, from the structural analysis, we have found the cis-trans isomerization of the urethane linkage, the lack of an intermolecular hydrogen-bond network, and the puckering motion of a Pro side chain. These three features can weaken intermolecular association in the crystal and probably lower the melting point of (I).

Experimental

Crystals of the title compound were successfully grown from a carefully purified oil at low temperature (below 260 K). Analytical data (${ }^{1} \mathrm{H}$ NMR, ESI-MS and $[\alpha]_{D}$) were in accordance with the expected structure; $[\alpha]_{D}=-108.4^{\circ}(c 0.1, \mathrm{MeOH})$.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=300.35$
Monoclinic, $P_{1} 2_{1}$
$a=10.131(5) \AA$
$b=9.940(5) \AA$
$c=16.784(8) \AA$
$\beta=97.33(3){ }^{\circ}{ }^{\circ}$
$V=1676.4(14) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.190 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Cu K } \alpha \text { radiation } \\
& \text { Cell parameters from } 4739 \\
& \text { reflections } \\
& \theta=6.3-62.2^{\circ} \\
& \mu=0.75 \mathrm{~mm}^{-1} \\
& T=173.1 \mathrm{~K} \\
& \text { Platelet, colorless } \\
& 0.20 \times 0.20 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID	3190 independent reflections
\quad diffractometer	2122 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
ω scans	$R_{\text {int }}=0.040$
Absorption correction: refined from	$\theta_{\max }=68.3^{\circ}$
$\Delta F(D I F A B S$; Walker \& Stuart,	$h=-12 \rightarrow 11$
$1983)$	$k=-11 \rightarrow 11$
$T_{\min }=0.841, T_{\max }=0.928$	$l=-19 \rightarrow 19$

31310 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.089$
$w R\left(F^{2}\right)=0.193$
$S=1.76$
2122 reflections
217 parameters

Figure 1
The asymmetric unit of (I) with the atomic numbering scheme. Displacement ellipsoids (spheres) are drawn at the 50% probability level. Hydrogen bonds are shown with dotted lines. All H atoms have been omitted, except for those involved in hydrogen bonding.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N121-H10 \cdots O221	0.95	1.86	$2.794(12)$	168
N221-H34 \cdots O112	0.95	2.21	$3.070(11)$	150

All non-H atoms were refined with isotropic displacement parameters due to the limited numbers of observed reflections. Even at the low-temperature condition (173 K), diffraction from the crystal of (I) was too weak to collect enough data for anisotropic refinement. H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$) and refined with a riding model, and with $U_{\text {iso }}$ constrained to be $1.2 U_{\text {iso }}$ of the carrier atom. The absolute stereochemistry was not established from the diffraction experiment. Friedel pairs were averaged. The absolute configuration was confirmed from the spectroscopic data, α_{D}, of the compound.

Data collection: RAPID-AUTO (Rigaku/MSC and Rigaku, 2003); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2003); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP (Johnson, 1965); software used to prepare material for publication: CrystalStructure.

HO acknowledges a Grant-in-Aid for Scientific Research on Priority Areas (No. 14078101, Reaction Control of Dynamic Complexes) from the Ministry of Education Culture, Sports, Science and Technology, Japan.

References

Abe, N., Oku, H., Yamada, K. \& Katakai, R. (2001). Peptide Science 2000, edited by T. Shioiri, pp. 289-292. Osaka: The Japanese Peptide Society.
Benedetti, E., Pedone, C., Toniolo, C., Nemethy, G., Pottle, M. S. \& Scheraga, H. A. (1980). Int. J. Peptide Protein Res. 16, 156-172.

Burla, M. C., Camalli, M., Carrozzini, B., Casarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). SIR2002. The Institute of Crystallography, CNR, Roma, Italy.
Clegg, W., Jackson, R. F. W. \& Wishart, N. (2003). Acta Cryst. E59, o86-o88.
Goerbitz, C. H. \& Etter, M. C. (1992). Int. J. Peptide Protein Res. 39, 93110.

Ishiguro, T., Oku, H., Yamada, K., Sato, K., Kano, S., Suzuki, M. \& Katakai, R. (2001). In Peptide Science 2000, edited by T. Shioiri, pp. 293-296. Osaka: The Japanese Peptide Society.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Karle, I. L. (1992). Acta Cryst. B48, 341-356.
Rigaku/MSC \& Rigaku (2003). CrystalStructure and RAPID-AUTO. Rigaku/ MS, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Tokyo, Japan.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Watkin, D. J., Prout, C. K. Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.

